- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000000000001
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chao (3)
-
Guo, Chenghua (3)
-
Xie, Sihong (3)
-
Zhang, Xi (3)
-
Ma, Guixiang (2)
-
Zeng, Ming (2)
-
Li, Qi (1)
-
Liu, Jiaxin (1)
-
Yu, Han (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Uncertainty Quantification (UQ) is vital for decision makers as it offers insights into the potential reliability of data and model, enabling more informed and risk-aware decision-making. Graphical models, capable of representing data with complex dependencies, are widely used across domains. Existing sampling-based UQ methods are unbiased but cannot guarantee convergence and are time-consuming on large-scale graphs. There are fast UQ methods for graphical models with closed-form solutions and convergence guarantee but with uncertainty underestimation. We propose LinUProp, a UQ method that utilizes a novel linear propagation of uncertainty to model uncertainty among related nodes additively instead of multiplicatively, to offer linear scalability, guaranteed convergence, and closed-form solutions without underestimating uncertainty. Theoretically, we decompose the expected prediction error of the graphical model and prove that the uncertainty computed by LinUProp is the generalized variance component of the decomposition. Experimentally, we demonstrate that LinUProp is consistent with the sampling-based method but with linear scalability and fast convergence. Moreover, LinUProp outperforms competitors in uncertainty-based active learning on four real-world graph datasets, achieving higher accuracy with a lower labeling budget.more » « less
-
Chen, Chao; Guo, Chenghua; Ma, Guixiang; Zeng, Ming; Zhang, Xi; Xie, Sihong (, Workshop on Interpretable Machine Learning in Healthcare at ICML 2023)Robust explanations of machine learning models are critical to establish human trust in the models. Due to limited cognition capability, most humans can only interpret the top few salient features. It is critical to make top salient features robust to adversarial attacks, especially those against the more vulnerable gradient-based explanations. Existing defense measures robustness using lp norms, which have weaker protection power. We define explanation thickness for measuring salient features ranking stability, and derive tractable surrogate bounds of the thickness to design the R2ET algorithm to efficiently maximize the thickness and anchor top salient features. Theoretically, we prove a connection between R2ET and adversarial training. Experiments with a wide spectrum of network architectures and data modalities, including brain networks, demonstrate that R2ET attains higher explanation robustness under stealthy attacks while retaining accuracy.more » « less
-
Chen, Chao; Guo, Chenghua; Ma, Guixiang; Zeng, Ming; Zhang, Xi; Xie, Sihong (, Workshop on Interpretable Machine Learning in Healthcare at ICML 2023)
An official website of the United States government

Full Text Available